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ABSTRACT

A proof of convergence of the sequence of slender-ship low-Froude-number

approximations r»£ ,n >0, defined in the slender-ship theory exposed in
Noblesse [1] is given for the particular case of ship hulls in the form of

vertical cylinders with elliptical waterlines. More precisely, it is shown

that we have

r^} =[l-{b/(l+b) }n+1]2 vl7 , n>0,

where b is the beam/length ratio of the elliptical cylinder, and r^ is

the low-Froude-number wave-resistance approximation associated with the exact

zero-Froude-number potential.
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INTRODUCTION

This research project was concerned with the wave resistance experienced

by a ship in rectilinear motion with constant speed in a calm sea. More

precisely, the project focused on a new analytical theory for predicting the

wave resistance of a ship. Two parallel and complementary objectives of the

project were: (i) to perform calculations for various idealized geometrical

ship forms for the purpose of systematically evaluating and testing the theory,

and (ii): to perform theoretical studies with the view of developing numerical

procedures for the ultimate practical application of the theory to usual real

ship forms.

Work has been performed along these two lines, and it is believed that the

above-stated objectives have been approximately met. The largest part of this

work in fact has already been published or presented in conferences, so that this

work will only be referenced here. The work performed within the first of the

two above-defined objectives of the project has essentially been presented in

three numerical studies performed by graduate students (P. Koch and C.Y. Chen)

under the supervision of the principal investigator. The precise references to

these three studies are given below:

1. "Wave resistance of the Wigley and Inui hull forms predicted by two simple

slender-ship wave-resistance formulas", by P. Koch & F. Noblesse, Proc. of

the Workshop on Ship Wave-Resistance Computations, David W. Taylor Naval

Ship Research & Development Center, Bethesda, MD, Nov. 1979, pp. 339-353.

2. "A note on the waterline integral and thin-ship approximation", by P. Koch

& F. Noblesse, Wave Resistance Meeting at Izu Shuzenji, Japan, May 1980;

included in the Proc. of the Workshop on Ship Wave-Resistance Computations,

David W. Taylor Naval Ship Research & Development Center, Bethesda, MD,

pp. 515-522.

3. "A numerical investigation of a low-Froude-number slender-ship wave-resistance

formula", by C.Y. Chen & F. Noblesse, Proc. of the Continued Workshop on

Ship Wave-Resistance Computations, Izu Shuzenji, Japan, Oct. 1980, pp. 39-63.

The work performed within the second objective of the project mainly consists

in a study of the Green function of the theory of ship wave resistance. This
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study was presented in a M.I.T. Sea Grant Report. The precise reference to

this study is:

4. "Alternative expressions for the Green function of the theory of ship

wave resistance", by F. Noblesse, M.I.T. Sea Grant College Program,

Rep. No. MITSG 79-23, Sep. 1979, 41 pp<

Additional work was performed on the subject. This led to a revised and

extended version of the above Sea Grant Report, due to appear in the July 1981.

issue of the Journal of Engineering Mathematics. The reference to this

study is:

5. "Alternative integral representations for the Green function of the theory

of ship wave resistance", by F. Noblesse, Journal of Engineering Mathematics,

July 1981.

The present report presents additional recent results related to the first

of the two above-defined objectives of the project. A slightly-modified form

of this report will be submitted for publication to the Journal of Engineering

Mathematics. Specifically, the main object of this study is to prove the

convergence of the sequence of slender-ship approximations defined in the slender-

ship theory of wave resistance exposed in Noblesse [1]. Convergence is demonstrated

for the particular case of the sequence of slender-ship low-Froude-number approxi

mations r^ , n > 0 , and for ship hulls in the form of vertical cylinders with
elliptical waterlines. The approximations ri!jj are shown to converge to the low-
Froude-number approximation r* (obtained by using the zero-Froude-number

potential as an approximation to the velocity potential in the expression for

the Kochin free-wave amplitude function) as n •*• °° . More precisely, it is proved

that we have

rg} =[l-{b/(l+b) }n+1]2 rl7 ,n>0,
where b is the beam/length (thickness) ratio of the elliptical cylinder. Further

more, the low-Froude-number wave-resistance approximation for a vertical elliptical

cylinder, r^ , is examined in the limiting case b=l, corresponding to a circular
cylinder, and in the thin-ship (b + 0) and low-Froude-number (F •* 0) limits.

In particular, it is shown that we have
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rl7 * (23lTr/64)F6/b2 +27T1/2(F7/b2)sin(2/F2 +tt/4) for F« b« 1 ,

r^F * irb2F2 - 27r1/2b2F3sin(2/F2 +tt/4) for b« F« 1 .

*
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1. CONVERGENCE OF THE SEQUENCE OF SLENDER-SHIP

LOW-FROUDE-NUMBER APPROXIMATIONS r&'

The low-Froude-number wave-resistance approximation, r»_, is defined

in Noblesse [1] as the approximation obtained by using the zero-Froude-number

(doublerhull) potential as an approximation to the velocity potential of the

flow caused by the ship in the expression for the Kochin free-wave amplitude

function. This low-Froude-number wave-resistance approximation is essentially

identical to the low-speed approximations proposed by Guevel, Vaussy, and

Kobus [2], Baba [3], Maruo [4], and Kayo [5], as is shown in [1].

The zero-Froude-number potential, <j>~, is given by the solution of an

integral equation of the form

♦0(x) = fQ(x) - L(x;$0) . (1)

In this equation, fn(x) is the potential defined as

fQ(x) =| G0(x,|)nx(|)da(?) , (2)
where h is the portion of the ship hull surface below the plane z=0 of the

mean sea surface, da is the differential element of area of h, n is the
. x

component along the x axis—taken along the ship course and pointing towards
->• ->--»•

the ship bow—of the unit outward normal vector n to h, and G«(x,4) is the
-*" •*• 9 2zero-Froude-number Green function given by 4irGn(x,£) = -l/[(x-£) + (y-n) +

(z-c)2]1/2 -l/[(x-£)2 +(y-n)2 +(z+c)2]1/2 . The term L(x;<j>Q) in equation
(1) is the linear transform of the potential $« defined by

L(x;4>Q) = I[>0(x) -*0(f)]V G0(x,f)-n(t)da(|) , (lb)
'h

where V represents the differential operator (3/3x, 3/3y, 3/3z) . The integral
x + ..-»•

equation (1) thus expresses the potential <£n(x) as the sum of the term f^(x) ,

which is given explicitly in terms of the hull shape, and of the term L(x;cjO,

which is evidently unknown a priori.

The integral equation (1) may be solved by using an iterative procedure

based on the recurrence relation
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*<n+1)(x) =f0(3) -L($;+£n)) ,n>0, (2)
where the initial (zeroth) approximation $Q may simply be taken as <J>q =0.
The recurrence relation (2) thus defines a sequence of iterative approximations

$^ to the zero-Froude-number potential (f»n. In particular, the first-order
(1) (1)approximation <j>!: is given by (^ - fQ. Convergence of the above-defined

sequence of iterative approximations <j>in^ is proved in Noblesse and Triantafyllou
[6] for the particular case of ellipsoidal hull forms, for which we have the

remarkable property that the approximations <f>Q are proportional to the exact

zero-Froude-number potential <j>Q; we thus have

»<n)(2) =a(n\£) , (3)
where the constant of proportionality a depends on the beam/length and

draft/length ratios. Convergence of the sequence of approximations 4>Q actually
is quite rapid for usual slender ship forms. Indeed, the first-order approxima

tion <!>i =fQ already provides afairly good slender-ship approximation to the
zero-Froude-number potential <j>0. For instance, for an ellipsoidal hull form

with beam/length and draft/length ratios equal to .15 and .05, respectively,

we have a^ '- .97, so that the first-order slender-ship approximation <{>0 is
smaller than the exact potential (J>0 by about 3%.

In this study, we consider the particular case when the hull is a vertical

elliptical cylinder, with beam/length (thickness) ratio b. Specifically, the
2 2 2elliptical waterlines are defined by the equation x + y /b = 1, or by the

parametric equations x = cos0, y = bsin6. On the surface of the elliptical

cylinder, the zero-Froude-number potential <{>q is given by

$0(x) = -bx = -bcos9 ,

as is well known. The iterative approximations <f>Q are given by equation (3).

We thus have

c|><n)(x") =-a(n)bcos0 , n>0 , (4)

where the constant of proportionality a is given by

aM =1- yn , n >0 , (4a)

with Y defined as

T = b/(l+b) . (4b)
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The relative error, en say, associated with the approximation ^ is
0

given by

(n) 11 • (n) \ /1 nE = (<f»Q- *q y)/<<>0 = Y , n > 0 . (5)

A sequence of slender-ship low-Froude-number wave-resistance approximations,
(n)

rtF say' may be associated t0 tne sequence of slender-ship zero-Froude-number
potentials <£Q by using the potentials <j> n ,n >0, as successive approximations
to the velocity potential in the expression for the Kochin free-wave amplitude

function. The wave resistance is given by the classical Havelock formula,

which takes the form

r
.00 = R(n), 2 2 /,-/_*-2 f |«.(n), ,,2, 2^_ 2.1/2, ,,.£F lY (1d/tt)F J |K» (t) J (v + x ) dx , (6)

for a hull having both port-and-starboard and fore-and-aft symmetry. In

equation (6), p is the density of water, U is the speed of the ship, L is a

characteristic length for the ship (in the present case of a hull in the shape

of a vertical elliptical cylinder, L is taken as half the length of the cylinder),
1/2

F = U/(gL) " is the Froude number, v 5 1/F is the inverse of the Froude number,

K» is the n order slender-ship low-Froude-number approximation to the Kochin
( \ ( \free-wave amplitude function, and R«" and r»^ are the corresponding dimensional

and nondimensional approximations to the wave resistance, respectively.

In the particular case of a vertical cylinder, the zero-Froude-number

potentials ^0 ' are independent of the vertical coordinate z, and the expression
for the Kochin spectrum function takes the form

K^(x)=-i {[t2 -v2/(v2 +x2)+ tx3^n)/3-e]t sina cosB
c '

2 2 1/2
+ \>T(vt sina sin8 - Tt cosa cosg)<j)/(v + x ) } dl. (7)

x y

In this equation, a and 3 are defined as

a=v(v2+ x2)1/2x , 3=x(v2+ x2)1/2y ; (7a,b)

furthermore, c represents the portion of the mean waterline (the intersection

curve between the vertical cylindrical hull and the mean sea plane z=0)

situated in the first quadrant x > 0, y > 0, dt is the differential element

of arc length along c, and t , t are the components of the unit tangent vector

.
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> ^C

Figure 1 - Definition sketch for a hull in the shape of a

vertical cylinder having both port-and-starboard

and fore-and-aft symmetry.



t to c, pointing towards the ship bow (c is oriented in the clockwise

direction), along the x and y axes, as is shown in figure 1.

In the special case of the elliptical cylinder defined by the equations

x= cos6 and y =b sine, we have dl = -(sin2e + b2cos2e)1/2de, t = sin6/(sin29
+b2cos2e)1/2, t=-b cose/(sin2e +b2cos2e)1/2, 4^n)= -a(n)b cose as was given
previously by equation (4), and 3<^n'/3£ =~a(n)b sin.9/(sin2e +b2cos2e)1/2.
Equation (7) then becomes

k|^(x) -ib I K(b2cos2e -a(n)b sin2e)/(b2cos2e +sin2e)~v2/(v2+ x2) >sina cos!

+ a vx(vsin6 sina sin8 + bx cose cosa cos3)/(v + O ]cos9 de ,

(8)

where a and 3 are given by

2?l/2 92 1/?
a = v(v + x ) cose , 3 - bx(v + x )x/ sine . (8a,b)

After extensive transformations of equation (8), given in the appendix,

iLUA±UldLlUU5 L

expressed in the form of the following equations:

equations (6) and (8) for the wave-resistance approximations r«*J can be

rg>= <i6/*)b2U-h7(n)b)2 2 7 2 7 ^ 7 -'3/7
k (x)(v +b x )(v +xZ) J/Zdx , n > 0 , (9)

0

where the function k(x) is given by the integral

•1

0

in equation (10), p, N(u), and D(u) are defined as

p=(vW'V+bV)1/2 , (10.)
N(u) = b2(v2-3x2)/(v2+b2x2)+Cl-b2)(l-u2) , (10b)

D(.u) = b4(v2+x2)2/(v2+b2x2)2+2b2(l-b2)(v2-x2)(v2+b2x2)"1(l-u2)+(l-b2)2(l-u2)2

k(x) = [ sin(pu)u(l-u2)1/2[N(u)/D(u)]du ; (10)

It may be seen from equations (4a,b) that we have a •> 1 as n •*•

(10c)

:ions (4a,b) that we have c •> 1 as n •*• °° .

Equation (9) then yields
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rlF =(16/Tr)b2(l+b)2 j k2(x)(v2+b2x2)(v2+xV3/2dx . (11)
0

Equations (9) and (11) show that we have ri^ =r* (1+cr b) /(1+b) .
By using equations (4a,b), we may finally obtain

vam (1-Ya+1)2r&r • n - ° • (12)
Convergence of the sequence of slender-ship low-Froude-number approximations

rijl ,n > 0, is immediately established by equation (12). More precisely,
the relative error, n say, associated with the approximation r» is given

by

*(n) "<r£F "ri?))/r*F °2rn+1(l-Yn+1/2) . (13)
It is interesting that the relative error n associated with the wave-

resistance approximation ri ,which is obtained by using the approximation
<^ for the velocity potential, is of the same order of magnitude as the
error e associated with the approximation <j>0 to the potential. As

a matter of fact, we have

n(n) = 2£Cn+l)a_£(n+l>/2) , (14)

as may be seen from equations (5) and (13). The above result indicates that

it may be more advantageous to determine the wave resistance of a ship by

means of the Havelock and Kochin formulas for the energy contained in the

waves following the ship, rather than by direct integration of the pressure

acting upon the hull. Indeed, use of the approximation of order n to the

potential, <j>!jn ,yields aHavelock-Kochin wave-resistance approximation
comparable to the wave-resistance approximation which could be obtained by

hull-integration of the pressure given by the approximation of order n+1

to the potential, ^
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2. WAVE RESISTANCE OF A VERTICAL CIRCULAR CYLINDER

It is interesting to examine the limiting case when the beam/length

(thickness) ratio b of the vertical elliptical cylinder considered in the

previous section is equal to 1, corresponding to a circular cylinder. Equation

(4b) then yields y • 1/2, so that equation (12) becomes

rg>- (l-l/2n+1)2 rlT , »>0. (15)

By putting b = 1 in equations (10) and (11), we may obtain the following

expression for the low-Froude-number wave-resistance approximation r» :

/•CO

rlY =(64/rr) j k2(x)[(v2- 3x2)/(v2+ x2)]2(v2+ x2)~1/2dx , (16)

where the function k(x) is given by the integral

k(x) -j sin[(v2+ x2)u]u(l-u2)1/2du . (16a)
J0

By performing the change of variable u = sine in equation (16a), we may

obtain

k(x) =
ff/2

2 2 2
sin[(v + x )sine]cos~9 sine de = -(1/3)

0

Integration by parts then yields

it/2
k(x) = [(v2+ x2)/3] 2 2 4

cos[(v + x )sin6]cos 9 de .

tt/2

0

2 2
sin[(v + x )sin6]d cos'

0

By using equation 3.715(10) page 401 in Gradshteyn and Ryzhik [7], we may

finally obtain

k(x) =(rr/2)[J2(v2+ x2)]/(v2+ x2) , (17)
where J~ is the Bessel function of the first kind of the second order. Use of

equation (17) in equation (16) then yields

2L 2N12r, 2 , 2W, 2, 2V,2, 2, 2,-5/2rlF = 16tt [J2(v*+ t )] [(v - 3T*)/(v + t)]^(v + t ) """dx . (18)
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lt is interesting to consider the low-Froude-number limit F ->• 0

(v = 1/F -*• °°) of the above-defined wave-resistance approximation r» .

Equation (9.2.1) page 364 in Abramowitz and Stegun [8] yields

J2(v2+ t2) =-(2/tt)1/2(v2+ x2)"1/2 cos(v2+ x2- tt/4) +0(l/v3) as v+•.
By using this asymptotic approximation in equation (18), we may obtain

r^ ^ 32 (v2- 3x2)2(v2+ x2)""11/2 cos2(v2+ t2- ir/4)dx as F -*• 0 .
l¥ Jo

This equation may be expressed in the form

rl? * 16(1^+ I2) as F+ 0 , (19)

where I., and I« are the integrals

xi =

I2 =

' (v2- 3x2)2(\)2+ T2)"11/2dT , (19a)
0

[ (v2- 3t2)2(v2+ t2)"11/2 sin{2(v2+ x2)} dx . (19b)
0

By performing the change of variable x = v tan0 in equation (19a), we may obtain

ft f^2 9 ? Q ft ("*t2 7 7 5
I. = F (1-3 tan 9) cos 9 d9 = F° I (4 cos*8-3)* cos 9 d9 .
1 Jo Jo

This integral can easily be evaluated analytically, and it may be found that

we have

Ix =(104/315)F6 . (20)
1/2

By performing the change of variable x = v(u-l) in equation (19b), we may

obtain

I2 =(F6/2) [sin(2v2u)](4-3u)2u"11/2(u-l)"1/2 du .

The low-Froude-number limit of the Fourier integral I« is given by

I2 =(F7/2)(TT/2)1/2sin(2/F2+ tt/4) +0(F9) as F+0, (21)
as may be obtained, for instance, from equation (4) page 48 in Erdelyi [9] .
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By using equations (20) and (2.1) in equation (19), we may finally obtain

r^F =(1664/315)F6+ 4(27r)1/2F7 sin(2/F2+ tt/4) +0(F8) as F->• 0, (22)
in agreement with the result obtained previously (in a different manner) by

Guevel, Vaussy, and Kobus [2] and Baba [3] .
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3. THE MICHELL THIN-SHIP APPROXIMATION

The classical Michell thin-ship approximation, rM say, may readily be

obtained from equation (9) by putting b=0 in the integrand and a = 0.

This yields

rv = (16/Tr)b2v2
M

0

,2, ., 2 2.-3/2k (x)(v + x ) ' dx , (23)

where the function k(x) is given by equation (10) in which b is taken as b=0.

We thus have

k(x) =
fl . r ( 2^ 2.1/2 , ,. 2.-1/2 ,

sm[v(v + x ) u]u(l-u ) du . (23a)

By performing the change of variable u = sine in equation (23a), we may

obtain

k(x) =
fTT/2

2 2 1/2
sin[v(v + x ) sine] sine d9 = -

tt/2
2 2 1/2

sin[v(v + x ) sin9]dcos9

Integration by parts then yields

i / ^ / 2^ 2.1/2k(x) = v(v + x )
fTT/2

2 2 1/2 2
cos[v(v + x ) sine]cos 9 d8 .

By using equation 3.715(10) page 401 in [7], we may finally obtain

k(x) = (tt/2)J1(v(v2+ x2)1/2} , (24)

where J is the Bessel function of the first kind of the first order. Use

of equation (24) in equation (23) then yields

2 2 [
rM ==4irb2v2 I [Jx{v(v2+ x2)1/2}]2(v2+ x2)"3/2 dx . (25)

In the low-Froude-number limit, we have

Jx{v(v2+ x2)1/2} =- (2/ttv)172 (v2+ x2)"174 cos{v(v2+ x2)1/2+ tt/4 }+ 0(l/v3)
as v •*• « ,
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as may be obtained from equation (9.2.1) page 364 in [8]. By using this

asymptotic expansion in equation (25), we may obtain

2
r,, * 8b v

M

? 2 -2 2 ? 9 1/9
(v + x*) cos {v(v + xV + tt/4} dx as F •* 0 .

This equation may be expressed in the form

2
r.. ^ 4b v (I. - I.) as F ->• 0 ,

M 12

where I and I« are given by the integrals

(26)

/CO /CO

I-, - ! (v2+ x2)"2dx , I, = (v2+ x2)"2sin{2v(v2+ x2)1/2} dx , (26a,b)
1 Jo l Jo

The integral I can be evaluated analytically; we have

I]_ - (tt/4)F3 . (27)
2 1/2

By performing the change of variable x = v(u -1) in equation (26b), we

may obtain

.3 rl, - F- [sin(2v u)](u+l) ' u (u-1) ' du .
1

The low-Froude-number limit of this Fourier integral is given by

I2 =(F4/2)1T sin(2/F2+ tt/4) +0(F6) as F*0, (28)

as may be obtained from equation (4) page 48 in [9]. By using equations (27)

and (28) in equation (26), we may finally obtain

r /b2 = ttF2 - 2tt1/2 F3sin(2/F2+ tt/4) + 0(F4) as F+ 0 ,

in agreement with equation (72) in Maruo [4] .

(29)
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4. THE LOW-FROUDE-NUMBER LIMIT

We now consider the low-Froude-number asymptotic behavior of the low-

Froude-number wave-resistance approximation for a vertical elliptical cylinder

given by equations (11) and (10). Equation (10) may be expressed in the form

k(x) =j sin(pu)<j)(u)(l-u)"1/2 du , (30)
J0

where the function <t)(u) is defined as

<{>(u) - u(l-u)(l+u)1/2 N(u)/D(u) . (30a)

The low-Froude-number limit of the Fourier integral (30) is given by

k(x) 'v -(tt/2)1/2(v2- 3t2)(v2+ b2x2)1/4 sin(p+7r/4)/b2(v2+ x2)11/4 as F-> 0 , (31)

as may be obtained from equation (6) page (48) in [9]. By using the asymptotic

approximation (31) in equation (11), we may obtain

vlF ^8[(l+b)/b]2 (v2- 3x2)2(v2+ b2x2)3/2(v2+ x2)"7 sin2(p+rr/4)dx as F- 0 .

By performing the change of variable x = vt, we may express the above equation

in the form

r^, *4F6[(l+b)/b]2[I(b)+ J(b,F)] as F+0, (32)
where I and J are given by the integrals

Kb) = (l-3t2)2(l+b2t2)3/2(l+t2)"7 dt , (32a)
0

J(b,F) = (l-3t2)2(l+b2t2)3/2(l+tV7 sin[2v2(l+t2)1/2(l+b2t2)1/2]dt . (32b)
0

2 1/2 2 2 1/2
By performing the change of variable u = (1+t ) ' (1+b t ) , which

yields t= (l+b2)1/2[{l+4b2(u2- l)/(l+b2)2 }1/2 -l]1/2/21/2b ,we may express
the function J(b,F) in the form

J(b,F) =
2 -1/2

sin(2\Tu)<f>(u)(u-l) x/^ du , (33)
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where the function $(u) is given by

4>(u) - (l-3t2)2(l+b2t2)3/2(l+t2)"'7(u-l)1/2(dt/du) . (33a)

The low-Froude-number limit of the Fourier integral (33) is given by

J(b,F) * [7ri/2/2(I+b2)1/2]F sin(2/F2 + tt/4) as F •* 0 . (34)

Use of the asymptotic approximation (34) in equation (32) then yields

rtY \ 4F6[(l+b)/b]2 1(b) +27r1/2[(l+b)2/b2(l+b2)1/2]F7 sin(2/F2+ tt/4) as F•*• 0, (35)
where the function 1(b) is defined by the integral (32a). In the limit b=l, we

have 1(1) = 104/305, and the asymptotic approximation (35) becomes identical to

equation (22).

We have 1(0) = 21ir/256, and equation (35) yields

rl7 -v (2l7T/64)F6/b2 +27T1/2(F7/b2)sin(2/F2+ tt/4) asF +O&b +O.(36)
This asymptotic approximation however is not valid in the limit b=0. Indeed,

equation (36) assumes F << b. The low-Froude-number thin-ship approximation

(36) should be compared to the thin-ship low-Froude-number approximation given

by equation (29). The latter approximation may be expressed in the form

r£F * irh2'p2~ 2*1,lh1^ sin(2/F2+ tt/4) as b->• 0&F+0. (37)
The approximation (37), which assumes b << F, is quite different from the

approximation (36), valid if F << b. This difference stems from the square-

root singularity that develops at u=l in the integrand of equation (10) in

the limit b •*• 0. If the Froude number F and .the beam/length ratio b are both

small and of the same order of magnitude, £ say, both equations (36) and (37)

yield r« = 0(e4) as e -*• 0 .
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APPENDIX : THE KOCHIN FREE-WAVE AMPLITUDE FUNCTION

FOR A VERTICAL ELLIPTICAL CYLINDER

IN THE LOW-FROUDE-NUMBER APPROXIMATION

Let y+ be defined as

Y± = a ± 3 ,

where a and 3 are given by equations (8a,b). We then have

2 2 1/2Y± = (v cos9 ± bx sin9)(v + x ) ' . (Al)

Differentiation of the above equation yields

dY+/d9 =-(v sine + bx cos9)(v2+ x2)1/2 .

The expression

2(v sin9 sina sin3 + bx cos9 cosa cos3)

may be written in the form

v sin9(cosY_ - cosy,) + bx cos9(cosy + cosy.) =

(v sine + bx cos9)cosy -(v sin9 - bx cos6)cosy, -

[cosY.(dY,/d9)-cosY (dy /d9)]/(v2+ x2)1/2 =
T T — —

[d(sinY+ - sinYj/d9]/(v2+ x2)1/2 .
The integral

2 2 1/2 r7r/2
2(v + x ) I (v sin9 sina sin3 + bx cos9 cosa cos3)cos9 de

-'o

may then be expressed in the form

tt/2

[d(sinY, - sinY_)/de]cos9 d9 .
o

Integration by parts finally yields

tt/2
(sinY+ - sinY_)sin9 d6

o
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since the expression (sinY, - sinY_)cos9 vanishes for both 6=0 and e=n72,

Equation (8) may then be expressed in the form

*&>- a. [{(b2cos29-a(n)bsin2e)/(b2cos29+sin29)-v2/(\;2+x2)} cos3(sinY.+sinY )
0

+a(n)vx(v2+ x2)"1sin6(sinY+ -sinY_)]d9 .
By grouping the terms multiplying sinY, and sinY , we may express the above

equation in the form

24f)= ib
(ft/2

(c sinY + c sinY,)d9 , (A2)
0

where the factors c. and c_ are given by

c+= (b2cos29 -a(n)bsin29)cos9/(b2cos26 +sin29)-(v2cos9 ±cr(n)vxsine)/(v2+ x2)
Let p and X be defined as

f 2j_ 2.1/2. 2, ,2 2.1/2 /A_
p =» (v + x ) (v + b x ) , (A3)

cosX - v/(v2+ b2x2)1/2 , sinX »bx/(v2+ b2x2)1/2 . (A4a,b)

Equation (Al) defining y+ may then be written in the form

Y+ = p cos(9 + X) .

Equation (A2) may now be expressed in the form

rir/2

*#- ib [c (9;X)sin{p cos(9+X)} + c (9;X)sin{p cos(9-X) }]d6 , (A5)
0

where c+(9;X) is given by

c+(9;X) = (b2cos29 - a(n)bsin29)cos9/(b2cos29 + sin29)
2 (n} 2 2 2

-(b cosX cos9 ± a bsinX sin9)cosX/(b cos X + sin X) . (A5a)

By performing the changes of variables u = 9±X in equation (A5), we

may obtain

(n) (Tt/2+X rir/2-X
2K» = ib{ I c,(u-X;X)sin(p cos u)du + | c (u+X;X)sin(p cos u)du}

A — A

This equation may be expressed in the form
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24f)= ib(Il +12 +V '
where I,, I„, and I- are defined as the following integrals:

(-tt/2

Xl = [c (u-X;X)+c_(u+X;X)]sin(p cos u)du ,

(A6)

(A6a)

ro fo
J9 = I c (u-X;X)sin(p cos u)du + c_(u+X;X)sin(p cos u)du , (A6b)

X

tt/2+X
I, = I c (u-X;X)sin(p cos u)du +
J 'tt/2

(Tr^-X

tt/2

c (u+X;X)sin(p cos u)du . (A6c)

Equation (A6b) may be expressed in the form

I2 = -
-'o

c,(u-X;X)sin(p cos u)du +
f*

c (-u+X;X)sin(p cos u)du

[c,(u-X;X)-c_(-u+X;X)]sin(p cos u)du .

Equation (A5a) then shows that we have

I2 = 0 .

By performing the changes of variables u

equation (A6c), we may obtain

(A7a)

= tt/2 + v and u = tt/2-v in

r3" c (Tr/2+v-X;X)sin(-p sin v)dv +
<x

c (Tr/2-v-HX;X)sin(p sin v)(-dv)

[c+(tt/2+v-X;X)+ c_(Tr/2-v+X;X)]sin(p sinv )dv .
0

Equation (A5a) shows that we also have

(A7b)

By using equation (A6a) and equations (A7a,b) in equation (A6), we may obtain

tt/2

I3 = 0.

2^}= « c(9)sin(p cos 9)d9 ,

where c(9) i c (9-X;X)+c_(9+X;X) is given by

(A8)
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c(9) = [b2cos2(e+A)-a(n)bsin2(e+X)]cos(6+X)/[b2cos2(e+X)+sin2(e+A)]

+[b cos (9-X)-o n bsin (9-X)]cos(e-A)/[b2cos2(e~X)4-sin2(e-X)]

- 2v cose(v cosX -a(n\ sinX)/(v2+ x2) . (A8a)

Let u and v be defined as

u=cose , v=(l-u2)1/2 =sine . (A9a,b)

Use of equations (A9a,b) and (A4a,b) yields

cos(e+X) = (vu -biv)/(v2+ b2x2)1/2 , cos(e-X)=(vu +bxv)/(v2+ b2x2)1/2 ,•
sin(6+X) = (vv + bxu)/(v2+ b2x2)1/2 , sin(e-X)=(vv -bxu)/(v2+ b2T2)1/2 .

The function c(9) defined by equation (A8a) then becomes the function c(u)

given by the equation

(v'+ bx) c(u) = (vu-bxv)[b2(vu-bxv)2-a(n)b(vv4-bxu)2]/[b2(vu-bxv)2+(vvt-bxu)2]

+(vu+bxv)[b2(vu+bxv)2-a('n)b(vv-bxu)2]/[b2(vu+bxv)2+(vv-bxu)2]

-2vu(v2- a(n)bx2)/(v2+ x2) .

The change of variable u = cose in equation (A8) then yields

sin(pu)c(u)(l-u2)~1/2du .
0

This equation may be expressed in the form

2(v2+ b2x2)1/2 K^}= ib | sin(pu)f(u)(l-uV1/2du , (A10)

where the function f(u) is given by

f(u) = (vu-bxv)A(u,v)/B(u,v)+(vu+bxv)A(u,-v)/B(u,-v)-2vu(v2- c/n)bx2)/(v2+ x2);

in this equation, the functions A(u,v) and B(u,v) are defined as

A(u,v) = b (vu-bxv) - d^n^b(bxu+vv) , B(u,v) = b (vu-bxv)2+ (bxu+vv)2 .

For simplicity, the notation

A E A(u,v) , B E B(u,v) , A" = A(u,-v) , B" = B(u,-v) ,

2K^)= ib fl
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will be used. The above-defined function f(u) then becomes

f(u) = [vu(AB~+ A~B)+bxv(A~B-.AB~)]/BB~- 2vu(v2- a(n)bx2)./(v2-i- x2) .

Let the functions A(u,v) and B(u,v) be expressed in the form

A = AC- A° , B = Be+ B° ,

where A , A , B , B are given by

Ae = b4x2- a(n)bv2+ (b2+ a(n)b)(v2- b2x2)u2 , A0 = 2b(b2+ a(n)b)vxuv , (Alla,b)

Be = v2+ b4x2-(l-b2)(v2-b2x2)u2 , B° = 2b(l-b2)vxuv . (Allc,d)

We then have A~ = Ae+ A0, B~ = Be- B° , and

AB~+ A"B = 2(AeBe+ A°B°) , A~B-AB~ = 2(A6B°+ A°B6) , BB" = (B6)2-(B°)2 ,

as may easily be verified. The function f(u) then becomes

f(u)/2 =» [v(AeBe+ A°B°)u+bx(AeB°+ aV)v]/[(Be)2-(B°)2]-vu(v2- a(n)bx2) /(v2+ x2) ,

Equations (All) yield

AeB°+ A°Be = 2bvxuv[(l-b2)Ae+ (b2+ a(tl)b)Be] = 2b3vxuv(l+a(n)b) (v2+ bV) .

Let C and D be defined as

C= AeBe+ A°B° , D = (Be)2-(B0)2 . (A12a,b)

We may then obtain

f(u)/2vu = C/D - (v2- a(n)bx2)/(v2+ x2)+ 2b4(l+ a(n)b)x2(v2+ bV)(l-u2)/D ,

where equation (A9b) was used. This yields

f(u)/2vu = [(v2+ T2)C-(v2- a(n)bx2)D]/(v2+ x2)D+ 2b4(l+a(n)b)x2(v2+ b2x2)(l-u2)/D

It may be shown from equations (A12) and (All) that we have

D= (v2+ b4x2)2-2(l-b2)(v2+ b2x2)(v2- b4x2)u2+ (l-b2)2(v2+ b2x2)2u4 , (A13)

C =» 4b2(l-b2)(b2+ a(n)b)v2x2u2(l-u2)+ AeBe .

The function f(u) may then be expressed in the form

f(u)/2vu = 2b2[b2(l+o(n)b)(v2+ b2x2)+ 2(l-b2)(b2+ a(n)b)v2u2]x2(l-u2)/D

+[(v2+ x2)AeBe-(v2-a(n)bx2)D]/(v2+ x2)D . (A14)
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The expression (v + x )A B -(v -a bx )D may be written in the form

(v2+ x2)AeBe-(v2-a(n)bx2)D = -P + Qu2 - Ru4 , (A15)

where the factors P, Q, R are given by

d t 2a. i4 2U, 2X 2W (n), 2 .4 2N ,, 2 (n), 2W 2, ,4 2N, ,.,. .
P = (v + b x )[(v + x )(a 'bv - b x )+(v -o' ;bt )(v+b t )] , (A15a)

n ,2. 2^ / 2 ,2 2,,,. ,2W (n). 2 ,4 2, .,2, (n). w 2, ,4 2. ,
Q=(v + x)(v-bx )[(l-b )(a bv - b x )+(b + cr b)(v + b x )]

+2(l-b2)(v2+ b2x2)(v2-a(n)bx2)(v2-b4x2) , (A15b)

R= (l-b2)[(b2+ a(n)b)(v2+ x2)(v2-b2x2)2+(l-b2)(v2-a(n)bx2)(v2+ bV)2] . (A15c)

We have

P + R - Q e 0 , (A16)

as may be verified after fairly lengthy transformations. By using equation

(A16) in equation (A15), we may then obtain

(v2+ x2)AeBe-(v2~ a(n)bx2)D =~(l-u2)(P-Ru2) .

Equation (A14) may then be expressed in the form

(v2+ x2)D f(u)/2 vu(l-u2) =S+ Tu2 , (A17)

where S and T are defined as

S= 2b4(l+ a(n)b)(v2+ x2)(v2+ b2x2)x2 -P , (A17a)

T = 4b2(l-b2)(b2+ a(n)b)(v2+ x2)v2x2 + R . (A17b)

By using equation (Al5c), we may express equation (A17b) in the form

T = (1+ a(n)b)(l-b2)(v2+ b2x2)3 . (A18a)

Furthermore, by using equation (A15a) in equation (A17a), and after fairly

lengthy transformations, we may obtain

S= -(l+a(n)b)(v2+ b2x2)2(v2-2b2x2- b4x2) . (A18b)

Use of equations (A18a,b) in equation (All) then yields

(v2+ x2)D f(u)/2 vu(l-u2) = -(l+a(n)b)(v2+ b2x2)3N(u) , (A19)

where N(u) is defined as

N(u) = [v2- 2b2(l+b2/2)x2]/(v2+ b2x2)-(l-b2)u2 . (A19a)
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Let the function D(u) defined by equation (A13) be expressed in the form

D(u) = (v2+ b2x2)2 D(u) , (A20)

where D(u) thus is given by

D(u)= [(v2+ b4x2)/(v2+ b2x2)]2 -2(l-b2)[(v2- b4x2)/(v2+ b2x2)]u2+ (l-b2)2u4. (A20a)

Use of equation (A20) in equation (A19) then yields

f(u) =-2v(l+a(n)b)[(v2+ b2x2)/(v2+ x2)]u(l-u2)N(u)/D(u) . (A21)

By using equation (A21) in equation (A10), we may obtain the following

expression for the Kochin free-wave amplitude function:

4p}(x;v,b) =-ibv(l+a(n)b)[(v2+ bV)1/2/(v2+ x2)]k(x;v,b) , (A22)
where the function k(x;v,b) is defined as

k(x;v,b) *
a

0

sin(pu)u(l-u2)1/2[N(u)/D(u)]du . (A22a)

In equation (A22a), p is given by equation (A3), which is identical to equation

(10a) in section 1, and the functions N(u) and D(u) are given by equations

(A19a) and (A20a), respectively. The functions N(u) and D(u) can be expressed

in the form of equations (10b,c) in section 1, so that equation (A22a) is

identical to equation (10). Equation (9) can then finally be obtained by

using equation (A22) in equation (6).
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